PHYSICAL / INORGANIC **CHEMISTRY** ## DPP No. 21 **Total Marks: 48** Max. Time: 57 min. **Topic: Ionic Equilibrium** Type of Questions M.M., Min. Single choice Objective ('-1' negative marking) Q.1 to Q.4 (3 marks, 3 min.) [12, 12] Subjective Questions ('-1' negative marking) Q.5 to Q.13 (4 marks, 5 min.) [36, 45] 1. The pK₂ of iodic acid HIO₂ is log 6. Calculate the pH of a 1M HIO₂ solution (A) log 6 (B) log 5 (C) log 4 (D) log 3 2. The pH of a solution containing 0.1 M CH₂COONa and 0.1 M (C₂H₂COO)₂Ba will be K₂(CH₃COOH) = 2×10^{-5} , K₂(C₂H₅COOH) = 8×10^{-6} : (A) 8.13(C) 10.18 (D) 11.18 If the solubility of Ag_2SO_4 in 10^{-2} M Na_2SO_4 solution be 2 × 10^{-8} M then K_{sp} of Ag_2SO_4 will be: 3. (A) 32×10^{-24} (B) 16×10^{-18} (C) 32×10^{-18} (D) 16×10^{-24} 4. A solution is saturated with respect to $SrCO_3$ & SrF_2 . The $[CO_3^{2-}]$ was found to be 1.2 x 10^{-3} M. The concentration of F⁻ in the solution would be: K_{sn} (SrCO₃) = 10⁻⁹, K_{sn} (SrF₂) = 3 × 10⁻¹¹. (C) $6 \times 10^{-2} \text{ M}$ (A) $3 \times 10^{-3} \text{ M}$ (B) $2 \times 10^{-2} \text{ M}$ (D) $6 \times 10^{-7} \text{ M}$ 5. Find the solubility of CaF₂ in 0.5 M solution of CaCl₂ and water. How many times in solubility in the second case greater than in the first ? K_{sn} (CaF₂) = 3.2 × 10⁻¹¹. 6. If you place the amounts given below in pure water, will all of the salt dissolve before equilibrium can be established, or will some salt remain undissolved? (a) 4.96 mg of MgF₂ in 125 ml of pure water, $K_{sp} = 3.2 \times 10^{-8}$ $K_{sp} = 4 \times 10^{-12}$ (b) 3.9 mg of CaF, in 100 ml of pure water, Also find the percentage saturation in each case. 7. The solubility product constant for silver iodate AgIO₃ is 1.0 x 10^{-8} . If 0.10 g of solid AgIO₃ is added to 100.0 ml of 0.02 M KIO₃, what are the concentrations of K⁺, IO₃⁻ & Ag⁺ at equilibrium? Calculate the volume (mL) of 0.1 M Na₂SO₄ which must be added to 10 mL of HCI (pH = 1.0) so that pH of 8. the resulting solution becomes two. (Given K_2 for $H_2SO_4 = 10^{-2}$) Calculate the molar solubility of silver thiocyanate, AgSCN, in pure water & in water containing 0.01 M 9. NaSCN. K_{sp} (AgSCN) = 10^{-12} . 10. Assume you place 1.234 g of solid Ca(OH)_a in 1.00 litre of pure water at 25° C. The pH of the solution is found to be 12. Estimate the K_{sp} for Ca(OH)₂. 11. 25 ml clear saturated solution of Pbl₂ (aq.) requires 12.5 ml of AgNO₃ (aq.) solution. What is molarity of AgNO₃ solution? K_{sp} of PbI₂ is 5×10^{-10} , K_{sp} of AgI = 1.2×10^{-17} . 12. Calculate F⁻ in a solution saturated with respect of both MgF₂ and SrF₂. $K_{sn}(MgF_2) = 9.5 \times 10^{-9}, K_{sn}(SrF_2) = 4 \times 10^{-9}.$ 13. A solution is saturated with respect to MgCO₃ & Ag₂CO₃. It is found to have $[Mg^{2+}] = 2.2 \times 10^{-6} M$. Find [Ag⁺], given K_{sp} (Ag₂CO₃) = 8.8 × 10⁻¹² M³ and K_{sp} (MgCO₃) = 1.6 × 10⁻⁶ M². # Answer Key **DPP No. #21** 1. (D) 2. (B) 3. (B) (C) $4 \times 10^{-6} \,\text{M}, \, 2 \times 10^{-4} \,\text{M}, \, 50 \, \text{times}.$ 5. (a) Will dissolve, 32% saturation (b) will not dissolve, 100% saturation. 6. 7. $[Ag^{+}] = 5 \times 10^{-7}M$, $[IO_{3}^{-}] = 2 \times 10^{-2}M$, $[K^{+}] = 2 \times 10^{-2}M$. 15 ml. 9. 10⁻⁶ M, 10⁻¹⁰ M. 10. $K_{so} = 5 \times 10^{-7}$. **11.** 2×10^{-3} . **12.** $[F^-] = 3 \times 10^{-3} M$. **13.** 1.1 × 10⁻⁵ M. ### PHYSICAL / INORGANIC CHEMISTRY **DPP No. #21** 3. $$Ag_2SO_4 \iff 2Ag^+ + SO_4^{-2}$$ $$2s' (s' + 10^{-2}) \approx 10^{-2}$$ $$K_{so} = (2s')^2 (10^{-2}) = (2 \times 2 \times 10^{-8})^2 (10^{-2}) = 16 \times 10^{-18}.$$